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INTRODUCTION

Analysis of the delay experienced by a side-road driver attempti-
ing to merge with, or cross, traffic on a main road has been conducted by
many authors; see Bisbee and Oliver [ 2 ], Buckley and Blunden [3], Evans,
Herman, and Weiss [4], Garwood [5], Gaver [6], Hawkes[ 8], Jewell[9], and
others., Postulating various behavioral characteristics for side-road
drivers, the above authors have presented formulas describing the long-
run delays of drivers attempting to merge or cross, and other related
measures such as side-road queue magnitudes.

The purpose of the present paper is to study one such model
numerically, with special emphasis upon time-dependent behavior. For
particular examples we shall exhibit the manner in which expected delay
either converges to the long-run limit, if a finite limit exists, or
grows if there i1s saturation., Without such information we are forced to
rely upon the "steady-state" or long-run results of queueing theory.
Steady-state values may be reached rather slowly under some conditions,
e.g. during rush hours; 1t is perhaps useful to have some idea of the
adequacy of the long-run predictions at various times after the start of
the rush hour, One factor that emerges as important in this study is the

effect of mixing "fast" with "slow" diivers in various proportions on the

¥
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side-road, "fest" drivers being those willing to accept relatively short
main-road gaps for merge or crossing, "slow drivers (e.g. possibly
buses and trucks) requiring somewhat more time,

Finally, our numerical procedure allows the study of natural
approximations to the queuveing processes that arise in this, and other,
contexts. We give an example of one such approximation that is related
to diffusion theory and the "heavy traffic" approximations of J.F.C.
Kingman, It seems sensible to attempt to find plausible and comprehen-
sible approximations for the queueing processes arising in traffic, as in
other areas of applied probability. Numerical methods provide one means
of discovering and evaluating such approximations, and of uncovering

important differences in the various models thai bave been proposed.

THE MODEL

Our basic model has been introduced in an earlier paper [6].
We shall assume that main road traffic is a stationary Poisson process
with rate v and that main road vehicles can be considered to be points.
Side-road or merging traffic is likewise Poisson with rate A. There
are two types of side-road drivers: Type I will be called, for want of a
better term "fast" and Type 2 will be called "slow", although other
adjectives may be more meaningful; the restriction to two types is
easily 1lifted. The probability that fast and slow drivers appear at the
merger of the roads in any order is that of a sequence of Bernoulli trials:
the probability of a Type 1 being Pys and of a Type 2 being P,- The

reasons for distinguishing hetween the two driver types is that each type
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has a distinct gap acceptance mechanism; typically a fast driver will accept
or merge into a shorter main road gap than will a slow driver, so,condi-
tional upon the driver type, his gap acceptance probability functiop will
be given and he will behave in accordance with it. Putting this another
way, & side road driver experiences interrupted service: he compares his
critical gap to each new gap in maiu road traffic. In our present model

he selects a new critical gap from his characteristic gap acceptance
probability distribution for comparison to each new main road gap. When
fbr the first time his criticel gap is less than the main road gap he

makes entry into the main road stream, Furthermore -- and this is a
distinctive feature of this model -- the side road drive; indeed uses the

' entirety of his critical gap while making entry. In actual fact, drivers
perhaps "play safe", and wait for a main-road gaf that is much longer than
necessary for entry. However, if main road traffic is reasonably heavy

and gaps typically short, drivers may well behave approximately as postulated
here, If so, and if main-road traffic is Poisson, then instants of entry
from the side road are regeneration points, and the side-road queue is an
ordinary single-server system with independent completion times in place

of service times. For simplicity we shall consider the service (completion)
time to be made up entirely of ;he wait at the merge point (head of the
queue) for a suitable gap to appear, and neglect the move-up time, This

would seem reasonable under the conditions for which the present model

is applicable.



GAP ACCEPTANCE AND COMPLETION TIMES

Our aim is to give numerical results for the model, so we have
assumed a specific gap acceptance probability function for both "fast" and
"slow" drivers. The probability density of the critical gap for a driver
of Type 1 (1i=1(fast), =2(slow)) is gamma:

t k, k,-1 1 t ki k

1, A 1
£,(x5 my, ki) = Cji;-) 7;(;;7 exp|- -EI_] a; . (1)

Since the expected value of the critical gap is m,, and its variance is

2 1
my Xy

to cluster as tightly as desired around any value for m, by simply

the criticel gaps of a particular side-road driver may be forced

increasing k We shall shortly illustrate the effect of changing the

T
variance of the critical gap while its mean is held fixed.

The gap acceptance procedure is as frllows. When a new driver
moves into merge position, he is of type i with probability pi(1=l,2). He
immediately selects a critical gap, Gl, from density fi' If there are no
main-road cars to arrive at the merger within time G1 he enters, completing
entry at time Gl after he initially reached merge position. Suppose, however,
that a main-road car will reach the entry within Gl' The side-road driver
.waits until the instant it passes the merge pcint, and then selects another,
independent, gap, 02, from (1), and behaves as he did with Gl’ and so
forth for Gb’ etc. The probability that a side-road driver enters during
any critical gap is the probability that the latter contains no main-road

car, i.e.

-V ]
0,(v) - [ eV £ x; Ky max = (14 =) (2)
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and the Laplace transform of the density function of a critical gap,
given that entry is made, 1is
00
9, (ws)
1 ~8X =-VX i
W[G e fi(X) ki’ mi)d.x = —5;(7)— g - (3)
- |}

If G' denotes the above conditional critical gap, then El[e &L ] is given
by (3). The Laplace transform of the density function of a main road
gap, given that it is shorter than the critical gap and hence no entry

is made, is, putting Fi(x) for the distribution function associated with

(1),

o0
1-9,(8+v)
1 -8X -V¥X i
ITEI(;Y l[e [l-Fi(x)]e v dx = 1'¢1(v) = (4)
If M denotes such a conditional main-road gap, then E[e-BM] is given by
(4). Finally
C = Ml + M2 + eee + MN + G' (5)

where N denotes the number of too-short main road gaps; clearly

Hiealmpe 1} < oI 000 . (a0, 3,2, ) (6)

It then follows easily from the apparent independence that

-8C @ n
i -sM -8G'
Ele 7) = ? {E[e ° ]} E[e™*C J(1-9,(v) )%, (v)
n=0
(s+v)¢i(s+v)
s+v¢1(s+v) (7)
The Laplace transform of the completion time of a random
driver attempting to merge 1is
2 :
-850 (s+v;¢i(s+v)
Efe ™) =;Z; Py 's+v¢1(s+v) ’ (6)




and

2(c2] >% 2 {Wimmim} (9)
= P ’
i3 : vzwf(V)

wi(v) denotes the first derivative of ¢, at v. Now the long-run ex-

pected waiting time for a side-road driver to enter can be obtained under

our assumptions by using C as the service time in the classical formula:

2
E(C
im0 - gy By (1)

provided p = AE[C] < 1; here W(t) denotes waiting time at an irstant t
fime units from process initiation.

The expression (10) is limited to assessing expected waits "a
long time" after the process begins, and then only when p < 1. Thus it is
of no direct use for predicting delays at any specific short time after
some initial instant -- at which conditions, e.g. v or A, changed, as at
the onset of rush hour -- or when the merging capacity Is saturated, i.e.
when p > 1. In order to exhibit theJmanner in which expected waiting time
depends upon elapsed time, t, and also upon the initial state cf the
process, one way to proceed is to numerically invert the Laplace transform
of the exy:cted waiting time. Specifically, letting N(t) denote the

number of cars queued at the side road at time t, we invert

00

p(s) = [e'“t E[W(t)|N(0) = 1]dt, (11)

a formula for which may be derived from general queueing theory. This
formula is presented in (7], where a method of numerical transform inversion
is also developed. The methods of [7] have been applied to several specific

cases to obtain the numbers in the following table,
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EXPECTED DELAY AT SIDE ROAD
(initially, no queue)
pl = 0'5’ p2 = 0'5

m, =5, m, = 15 (secs)
k, =k, =2
1 2 : Long-Run
Caﬂe‘\q(aece) 60 (secs) 120 180 240 600 900 (10)
A = 0.05 '
; ¥ = 0.10 (14.6 19.5 22.2 24,0 27.7 28.3) (28.7)
E(S) = 13.12 2T7. 32.6 '35.3 37.1 L4o0.8 k.4 41.8
p = 0.65
{ A = 0.05
J "II v = 0.15 (18.4 25.8 30.5 33.9 43.1 u45.9) (b9.1)
§ E(S) = 14.69 32.1 40.5 U45.2 48.6 57.8 60.6 63.8
i p = 0.735
A = 0.075
w57 ok 0.10 (25.7 39.0 49.2 57.7 9k.1 115.8) (946.9)
E(S8) = 13.12 38.8 52.1 62.3 T70.8 107.2 128.9 960.0
p = 0.984
A = 0.075
Y 0.15 (31.9 50.4 65.6 78.9 143.2 187.9) Not
E(S) = 14.69 U46.6 65.1 80.3 93.6 157.9 202.6 Applicable
p =]

A = 0.05

v ¥ = 0.10 (22.1 32.0 38.8 W0 61.9 69.7) (90.6)
E(8) = 16.88 39.0 48.9 55.7 60.9 78.8 86.6 107.5
p = 0.84k

P = 0.75, P, = 0.25 (otherwise same as above)

X = Ooos

vi ¥, = 0.10 ( 7.8 9.4 10.0 11:0.2 10.5 10.5) (10.5)
E(s) = 9.38 17.2 18.8 19.4 19.6 19.9 19.9 19.9
p = 0.469

g -~ = T TN M ~—— . - .«.,T
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EXPECTED DELAY AT SIDE ROAD(Continued)
(initially, no qQueue)
p, =05 p,=05

kl = k2 =6

. Long-Run
CaseﬁrSaecsz 60 Ssecsz 120 180 240 600 900 glo)

(otherwise same as above)

A = 0.05
vir ¥, = 0.10 (23.3 3.2 4.9 48,0 69.5 T9.5) (112.7)
E(S8) = 17.15 4o0.5 51.4 59.1 65.2 86.7 97.7 129.9
p = 0.858 .
A = 0.075
virt ¥, = 0.10 (4o. b 66.7 89.8 112.2 226.6 316.6) Not
, E(S) 57.6 83.9 107.0 129.4 143.8 Applicable

F

NOTE: RNumbers in parentheses indicat» expected vait until head of line is
reached; other numbers indicate total time to make entry.
Dimensions of A and v are [secs~l], and of E(3) are [szcs].

- r . T o S . T, i —
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Although Table 1 was computed for specific parameter values, it
helps to provide an understanding of the approximation afforded by the long-
run formula, (10), vhen the latter is applicable, For comparison, the long-
run values of expected waiting time correlponding to the various ocases
appear in the right-most column of the table. For example,

1) (Jomxmri.ncga Ie to Cue. VII suggests the important effect of the
"shape" or "sharpness" of the gap acceptance probability function, as
measured by the parameter k, both upon the long-run expected wait and
upon the rate at which the long-run value; is approached. Although the
expected critical gaps for both driver types are the same in both cases, in
Case VII the probability that a side-road driver has a small critical gap
is much smaller than in Case I. In the present model this is because the
variance of the critical gaps for Case VII is one-third that in Case I.

The result is that entry is more difficult, and the traffic intensity is
larger, in Case VII, and the long-run value is much less rapidly
approached,

2) Comparing Cases I, V, and VI, the effect of driver type mix is
exhibited. Clearly a mixture of 25 percent slow-T5 percent fast results
in a drastically reduced wait, especially when compared to 75 percent
slow-25 percent fast. Moreover, approach to the long-run value is
correspondingly effected,

3) Finally, Cases 1II and VIII indicate the effect of the gap
acceptance probability shape upon wait when the merge is close to

saturation (former case) or over saturation (latter).
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APPROXIMATIONS

Examination of expressions (5), (6), and (7) reveals that C,
is a geometrically compounded random variable. If E[Cil becomes large,
either because main-road traffic density is high, or the probability of an
entry from the side-road, Qi(v), is small, then the distribution of C1

is approximately exponential:

F{C1 < x} ~1l - exp{ -x/E[Cil} (x > 0). (12)

Tendency to the exponential in distribution can be shown forrally by
means of a continuity theorem for Laplace transforms.
The fact that the service-time distribution tends to the

exponential suggests that an approximating process can be constructed,

having exponential service times in place of the true service times of (8),
that mimics closely both the transient and long-run behavior of the original
process. It is this, and allied, approximations that wve shall study
numerically here,

Suppose {W(t), t> é} represents the original, or "true", delay
process at the merge point; this process has arrival rate A and completion
times described by (8). In the light of (12), a first candidate for an
approximate process is {ﬁm(t)}, where the latter has arrival rate A and

mixed exponential completion times:

Cn, P P
1+sE[Cll l+sE[02]

(13)

A second candidate is {Qs(t)}, differing from {%i(t)} only in replacing

(13) by the single exponential
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Ele ") = > . (14)
140{918[01] + paz(Cal}

The degree of approximation thus obtained is {llustrated in the

next table for two cases,

Table 2
COMPARISON OF APPROXIMATIONS
FOR EXPECTED DELAY
(no initial queue)
x L3 O.Cs, | AR 0.10] ml L, | 5' lll2 = 15

k) =k, = 2 E[Cll = 5,629, s:(cz] = 20.625

I: p) = 0.75, p, = 0.25 E[C) = 9.375

p = 0.469
Q,g\r(!gga) 60 120 180 249 600 900
E(w(t)]) 7.8 9.4 10.0 10.2 10.9 10.5
E(W (1)) 8.6 10.6 11.4 11.8 12,2 - 12.2
E[H.(r)] 6.9 7.8 8.1 8.2 8.3 8.3

11: P, = 0.25, P, = 0.79; E[C] = 16.875

p = 0,84k
E[w(t)] 2.1 32.0 38.8 bk, 0 61.9 69.7
s(wm(r)] 23.3 3u.2 41.7 47.6 68.1 17.3
E(W, ()] 22.3 32.1 39.0 by, 2 62.2 70.1

Apparently, the approcimation is only fair in I and respeciable
in II, with the single exponential approximation superior to the mixed

exponential in II.
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It is noticeable in I that neither approximation is approaching
the limiting value for the true process. Unless main-road traffic is very
dense (v => o) the exponential (12) will not be precise, so we cannot in
general expect the approximating processes to possess the same long-run
limits as does {w(t)}u The latter limits depend upon higher moments than
the first; parenthetically the close agreement of E[w.(t)] snd E[W(t)) in
II above can be explained by the fact that the second moments of the
respective completion times are very close numerically.

The source of an improved approximation is, thus, to force the
approximating process to have the same long-run mean values as {ﬁ(t)
as vell as the same traffic intenaity. Consider [wd(t)}, having arrival

rate A, and exponential completion time Cd such that

d
p = XE[C] - xdE[cd] - pd (15)
and
E[W] —(%)-—[—]J E(C ] = E[W,). (16)
Thus we put

x{ E[C ] (17)

2
E{[C
Another wey of arriving at the aprroximation {Wd(t)}-is to argue
in a manner reminiscent of that used to obtain the diffusion approximation

to discontinuous processes; see Bailey [l1] or Khintchine [10]. Consider

the increments

AW(t) = W(t+at) - wW(t) -
19
Awd(t) = Wy(trat) - wd(t) .
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We expect the development of W(t) to be probabilistically similar to that
of wd(t) if the distributions of the independent increments are similar,
To bring about this similarity, equate the infinitesimal means and variances

of the two processes; neglecting the effects of the boundary at zero ve have

1 E(2Y) . appe) -1 (20)
ot—>0

s @) .y Ec,) -1 (21)
aéizo %E Var[s(t)] = AE[C) (22)
ln G var(a(t)) - O] (23)

Now equating traffic intensities in the two processes is precisely equiva-
lent to equating the infinitesimal means or "drifts" of (20) and (21).
Then if we specialize Cd to have the exponential distribution, and equate
(22) and (23) the expressions (17) and (18) fall out.
The qualities of the two approximations suggested are illustrated
in the following table.
Table 3

COMPARISON OF APPROXIMATIONS FNR EXPECTED DELAY
(No initial queue)

P, = Py = 0.5 A = 0.015, v = 0.25; E[C] = 39.051
m =5 m,=15 Ay = 0.01016, E[C,] = 57.665
kl = k2 = 2
Casé\r(uecs} 60 130 180 240 600 900 1200
E(W(7)] 22.45 34,81 43.09 49.17 67.23 T3.31 76.54

E(Wg(1)] 20.b1  29.68 35.41 39.38 49.80 52.62 53.89
E[Wd(r)] 23.44  35.91 k4,15 50.16 67.84 T73.73 76.83

- S —————  — - =
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Although the approximation afforded by {Vo(tjl is inadequate,
that given by {Qd(t)} would probably be entirely aatisfaétor for
applications,

At present it 18 not known how well a direct diffusion
approximation to {W(t)} compares in quality to the exponential approxi-
mation {Qd(t) . The diffusion approximation can be obtained, in principle,
by solving the forward partial differential equation of diffusion theory
for the density of waiting time, and then integrating to find the mean.
Neither is it yet known how closely higher moments, e.g. the variance,
of {Qd(t)} conform to corresponding moments of {w(t)}, nor how well the
probabilities of waits of various durations in the two processes agree.
J.F.C. Kingman's heavy traffic theory [11), [l2] does suggest that, in case
side-road arrival rate, A, increases so that traffic intensity approaches
unity from below, the diffusion approximation becomes increasingly

accurate. An increase in main-road density, v, has a similar effect.

B i & an
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